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Abstract

This article provides a tool to find a reasonable Boolean expression/equation from a truth table. This method, called the Progressive Logic Unit Subroutine or PLUSr, finds an optimum Boolean expression for real-world data, even if its truth table is too big to list and even if its lines are missing or repeated. For instance, using the Penn Machine Learning Benchmarks problem in DNA in a 3,196 x 180 dataset, the PLUSr obtained accuracies of 97.5% in category 1 in 821 seconds, all testing on unseen set of data and in a fraction of the time it takes for AI using linear regression. The PLUSr allows a program to increase linearly in time with a linear increase in variables. Since it uses only integer mathematics, it is swift and does not need expensive GPUs. It can also run on simpler platforms with faster, lower-level languages. Though its results may be approximations, they are close and exactitude is unnecessary for useful answers. The question is not “Is it perfect?” but “Can you do better in the same length of time?” The PLUSr improves generative AI programming, robot microcontrollers, medical image analysis, and many other tasks. This paper explains its core principles and demonstrates its utility.

1) Introduction 
The quest for speed runs through the history of computer science, since the faster a CPU or a software program performs, the more it can do. As transistor density increased, for instance, computers grew far quicker and more productive, and swifter propagation was a key factor in the improvement. Nimbler processes are more powerful as well. For example, the economical instruction sets of the 1980s RISC computers bred greater speed and productivity. 
The Progressive Logic Unit Subroutine, or PLUSr, is the fastest way of doing machine learning that the author knows of. For instance, he has solved the Penn Machine Learning Benchmarks (https://epistasislab.github.io/pmlb/) problem in DNA yielding very high results: 97.5% accuracy for category 1, and faster than AI using linear regression. The PLUSr can learn in real-time and it will work in generative AI programming, medical image analysis, and robot microcontrollers, among many other quickly evolving technologies. It requires few materials and little unusual equipment.
Because the PLUSr requires only integer math, it deals with no floating-point numbers. It can therefore run on simpler platforms and with faster, lower-level languages than Python. It also performs well on smaller, faster processors. 
The PLUSr easily handles hundreds or even thousands of inputs, with tasks that are highly challenging in other environments. It is ideal for computers, which can work with very large-scale Boolean problems, and it thus gives an important tool to professionals like engineers, data experts, and security specialists.
What kinds of problems can it solve? One type involves predicting an event from its cause. This ability is evolutionarily ancient, since creatures that can’t anticipate harms and rewards tend to have limited lifespans. For instance, the roundworm C. elegans, with just 302 neurons, can identify food and deleterious chemicals by odor, temperature, and taste, and can learn which routes through mazes lead to food.[endnoteRef:1] How can our software best identify cause and effect as well? With the PLUSr we can find an event A that leads to significant event B quickly and inexpensively.  [1:  Such simple learning is conditioning and thus automatic, like the salivary response of Pavlov’s dog. Causal reasoning itself seems limited to few non-human animals such as crows and monkeys.
] 

Pattern recognition is another basic form of intelligence. We humans perform it all the time, usually automatically and efficiently even though the source may not exactly match the prototype. For instance, faces change over time, but we easily recognize friends after decades of absence. Our signatures differ each time we write them, yet they are clearly ours. Every redwood tree is singular, yet they are all redwoods. We round off and if we couldn’t, we would struggle to understand the world. The PLUSr learns these relations quickly too. 
In this article, we will use data from the Penn Machine Learning Benchmarks problem in DNA to show how the PLUSr works in my Python program (https://github.com/edwardgeorgefleming/PLUSr/blob/main/dna_PLUSr) to find a Boolean expression with a very high degree of accuracy.

2) Method: Conceptual Analysis


In Boolean function optimization, the goal is to find the most efficient expression or equation for the purpose at hand, and the PLUSr improves the process to solve complex problems. It is a subroutine, but you can imagine it as a circuit, and Figure 1 presents the schematic for one:
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We may use several PLUSr’s for the same task or be connected in the same neural network, so the subscript i refers to a particular PLUSr, such as the second, fourth, or seventh. We omit it if we have only one.
Elsewhere in the diagram:
· The many variables Ai,j are digital environmental inputs, information from the real world transformed into Boolean 1’s and 0’s. If we wanted to identify photos of a cat, these would represent information from pixels of images, possibly cats. (While a cat picture might not be the best example for the PLUSr, we’ll use it because it is colorful, and everyone knows what a cat is. Logic structures like DNA work better.)
· Yi is the supervisory input, the goal whose related Boolean expression we seek from the A’s. In the feline case, it would be whether an environmental input was part of a cat image or not.
· Zi is the single Boolean output, 0 or 1, meant to equal or approach Yi. It’s a cat or it isn’t.
· Li is the learning controller, and it determines whether the PLUSri is totaling TX, TnX, TXY, TnXY, TXnY, and TnXnY (described below) or not. 
· Reseti returns the ith PLUSri to start.
In more detail, these are:
The raw material: Environmental signals. We denote these inputs with subscripts, A0, A1, A2, A3, and so on till the final one, An-1. I will call these inputs “features.” In the DNA dataset from the Penn Machine Learning Benchmarks, we have 180 features, and we put them in a matrix, X.
The thumbs-up or thumbs-down: The supervisory input. The most important input event lies at the bottom of the diagram: Y. The whole PLUSr aims at this matrix. For instance, are we seeing a photo of a cat? We place a 1 or 0 in Y depending on whether we have the selected target or not, here a cat or not a cat. We seek the Boolean equation that identifies this target, and the PLUSr does this by creating a Boolean expression of the features. 
Finale: The output Z. When the PLUSr thinks the environmental signals completely satisfy the Boolean expression for the Y input, it outputs that value to Z. This output is true if the PLUSr thinks Y is true (that is, the photo is really a cat), and false if it thinks Y is false (that is, it thinks the photo is not a cat).
Post-finale: The learning-control input, L. L comes into play when we use more than one PLUSr. It basically tells the PLUSr when to learn and when not to. If L = 1, we proceed normally, totaling the T counters TX, TnX, TXY, TnXY, TXnY, TnXnY in the equations below, and if it = 0, L turns off the counters for a moment. In the first PLUSr, the L is always 1. It’s always learning. We want to keep the data flow constant, since the first one has to soak up everything it can. But L will shut it off and enter the 0 state in the subsequent PLUSr’s if it needs to. 
Let’s look more closely at the environmental signals and the matrices, where key activity occurs.
The PLUSr’s environmental inputs appear in a matrix, X [see Figure 2]. In the Penn Machine Learning Benchmarks DNA dataset, there are 180 features, and in Figure 2 we must imagine that the rows and columns below extend much farther than they do. My Python program that carried out this benchmark DNA test provides an example, and it is available on github.com.
A truth table plots out the matrix of possible true-false, yes-no combinations. In Figure 2, there are 4 signals—pixels or other items—across the top, A0 through A3. Across the lines we see the truth values. Are the pixels or other items on or off? Each line contains a different mix of possibilities among them, so their total increases exponentially. Hence, the number of lines of possibilities becomes an exponent of 2 and in Figure 2 these four A’s have 24 = 16 combinations. For the Penn Machine Learning Benchmarks DNA Test, we would need 2180 lines to show all the combinations!
Figure 2
Line	A3	A2	A1	A0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

In the discussion below and in my program, the variables include:
m = the number of lines of binary samples in the dataset
n = the number of columns of features
X = the matrix overall. It is m times n, the totality of features in the dataset 
j = a particular feature or environmental input, usually unspecified, as a in algebra stands for an unspecified number
k = a single line in truth table, which will increment by 1 as we go down 
To find which features correspond to the target in the DNA test, we go through five stages with the PLUSr: 
1. Massaging. We must make the original data binary—such as true or false, 0 or 1—so it will fit into Boolean equations. If we want to input some pixels from a cat photo, for instance, we can use its brightness. However, each one’s brightness is a real number that is not necessarily Boolean. We need to massage it from pixel’s brightness to Boolean brightness, 1 or 0. So we might give each pixel a 1 if it were more than 50% bright and 0 if it were less. Of course, if the source data is binary, this step is unnecessary. 
2. Feeding. We enter the massaged data into the environmental inputs of a PLUSr.
3. Assessing. We need to know if each line of data is a cat. Each will contain that question and here is the sphere of Y.  This input is trying to learn what about the cat is important to know, and it will say, “Yes, it’s a cat,” or “No, it’s something else.” 
4. Coalescing. We figure out the Boolean equation from the data. Each line of the truth table has one picture and there are thousands of pixels. In the end there is one number that represents whether the picture is a cat. 
5. Testing. We apply the Boolean equation to new data, to see if it can identify the image as a cat. When it comes up with a decision, it sends it over to Z. Z is the final output.

3) Method: In-Depth Analysis
Now let’s look deeper into the PLUSr. Four stages are especially important:
1. Getting the totals in the matrices TX, TnX, TXY, TnXY, TXnY, TnXnY
2. Making the Boolean expression for Y
3. Refining the betas for greater accuracy
4. Using additional PLUSr’s, if needed
Step One: Getting the totals in the matrices (TX, TnX, TXY, TXnY, TnXY, and TnXnY.) In Figure 3, TX[i,j] is the Total in X of the ith PLUSr and the jth environmental signals, that is, the sum in matrix X of the 1’s in the jth column. Since this is the first and perhaps only PLUSr, the learning control input is always a 1. 

Figure 3
k	A0,k	A1,k	A2,k	Y	L
0	0	1	1	0	1
1	1	0	1	0	1
2	1	1	1	0	1
3	0	1	0	1	1
4	0	1	1	0	1
5	1	1	0	1	1
6	1	0	0	0	1
7	1	0	1	0	1
8	0	1	0	1	1
9	1	1	1	0	1
10	0	0	1	0	1
11	0	0	0	1	1
12	1	1	0	1	1
13	0	0	1	0	1
14	1	0	1	0	1
15	0	0	1	0	1


Let’s make a matrix X, a matrix Y, and a matrix L of the truth table data:


In our example:
				
The formulas are:







When:
= 
If  =  then in the ith PLUSr every time the environmental input j occurs, the supervisory input Yi occurs in the set Li. But in Figure 3, TX[0,0] = 8, TX[0,1] = 8, and TX[0,2] = 10, while TXY[0,0] = 2, TXY[0,1] = 4, and TXY[0,2] = 0. Since for all j columns,, we will not conclude anything useful here.
 
When:
=
Here, n = NOT. If  =  then in PLUSri every time the environmental input j does not occur, the supervisory input Yi occurs in the set L1. In Figure 3, TnX[0,0] = 8, TnX[0,1] = 8, and TnX[0,2] = 6, while TnXY[0,0] = 3, TnXY[0,1] = 1, TnXY[0,2] = 5. Since for all j’s. , we will not conclude anything useful. 

When:
=
If  =  then in PLUSri every time the environmental input j occurs, the supervisory input Yi does not occur in the set Li.  In Figure 3, TX[0,0] = 8, and TX[0,1] = 8, and TX[0,2] = 10, while TXnY[0,0] = 6, and TXnY[0,1] = 4, and TXnY[0,2] = 10. Since in every case when the environmental input j occurs, the supervisory input Yi doesn’t occur, the Boolean expression would be NOT Z0 = A2 because TXnY[0,2] = TX[0,2] is true. Then we can get Z0 =  A2.
When:
=
If  =  then every time the environmental input j does not occur, the supervisory input Yi does not occur in the set Li. In Figure 3, TnX[0,0] = 8, TnX[0,1] = 8, and TnX[0,2] = 6, while TnXnY[0,0] = 5, TnXnY[0,1] = 7, and TnXnY[0,2] = 1 Since for all j’s, , we won’t conclude anything useful.
 In the real-world, errors can arise in the sampled truth table. Though in Figure 3 presumably has no errors, larger truth tables may have them. Below, the operator “op_or” stands for  OR and “or_n” stands for NOT OR. In addition, “or_and” stands for AND and “and_n” stands for NOT AND. To allow for them we can say that:

When  is true, we add one to op_or[i,j].
When  is true, we make or_n[i,j] = 0.
When  is true, we add one to op_or[i,j].
When  is true, we make or_n[i,j] = 1.
When  is true, we add one to op_and[i,j].
When  is true, we make and_n[i,j] = 0.
When  is true, we add one to op_and[i,j].
When  is true, we make and_n[i,j] = 1.

Where // is the Python floor division operation that rounds down to the nearest integer. (The reason why this step helps is a little complicated, but just know it helps.) 
Overall, let’s say if beta = 50 and TX = 200, then TX//beta = 4 allows for 4 of the 200 samples to be in error. That is an accuracy of 98%.
De Morgan’s Theorem is helpful in changing NOT Z0 (a Boolean expression full of logical ORs) to Z0 (a Boolean expression full of ANDs). For instance, if NOT-Z = -A OR B OR -C we can change it to Z = A AND -B AND C.
Step Three: Refining the betas. The key here is finding the best size for the betas. Suppose we begin with a beta equal to m which doesn’t allow for any error in the training data. Modifying my Python program to run one PLUSr and then running it, we optimize the accuracy of the Boolean expression in Test 1. This Test has 797 lines and the Boolean expression is accurate for 631 of them, or 79%, as seen below in my program’s output for the Penn Machine Learning Benchmarks DNA dataset. However, it may be overlearning Test 1 and to correct for the possibility, we always conduct Test 2, which here yields 82% for category 1 and a beta = m.
After modifying my program to run one PLUSr for the DNA dataset, we get the output below. The operators are lower-case here and further on, as they are in Python, to make them easier to understand.
Start

DNA Category = 1
beta = [1791    1    1    1    1    1    1    1    1]
Test 1 Accuracy = 631/ 797 = 0.7917189460476788
The 1 PLUSr's Boolean Expression = ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 95] )
Test 2 Accuracy = 488/ 598 = 0.8160535117056856
Total Time = 0.2882423400878906 seconds = 3.336138195461697e-06 days

DNA Category = 1
beta = [223   1   1   1   1   1   1   1   1]
Test 1 Accuracy = 698/ 797 = 0.875784190715182
The 1 PLUSr's Boolean Expression = ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 93] AND NOT-X[ 95] )
Test 2 Accuracy = 532/ 598 = 0.8896321070234113
Total Time = 0.9125573635101318 seconds = 1.0562006522108008e-05 days

DNA Category = 1
beta = [55  1  1  1  1  1  1  1  1]
Test 1 Accuracy = 747/ 797 = 0.9372647427854455
The 1 PLUSr's Boolean Expression = ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 93] AND NOT-X[ 94] AND NOT-X[ 95] )
Test 2 Accuracy = 562/ 598 = 0.939799331103679
Total Time = 1.3542566299438477 seconds = 1.5674266550276015e-05 days

DNA Category = 2
beta = [1791    1    1    1    1    1    1    1    1]
Test 1 Accuracy = 393/ 797 = 0.493099121706399
The 1 PLUSr's Boolean Expression = ( NOT-X[ 86] AND NOT-X[ 88] )
Test 2 Accuracy = 307/ 598 = 0.5133779264214047
Total Time = 2.3366405963897705 seconds = 2.7044451347103827e-05 days

DNA Category = 2
beta = [447   1   1   1   1   1   1   1   1]
Test 1 Accuracy = 649/ 797 = 0.8143036386449184
The 1 PLUSr's Boolean Expression = ( X[ 84] AND NOT-X[ 86] AND NOT-X[ 88] AND X[ 89] )
Test 2 Accuracy = 506/ 598 = 0.8461538461538461
Total Time = 2.770738363265991 seconds = 3.206873105631934e-05 days

DNA Category = 2
beta = [55  1  1  1  1  1  1  1  1]
Test 1 Accuracy = 676/ 797 = 0.848180677540778
The 1 PLUSr's Boolean Expression = ( NOT-X[ 83] AND X[ 84] AND NOT-X[ 85] AND NOT-X[ 86] AND NOT-X[ 87] AND NOT-X[ 88] AND X[ 89] )
Test 2 Accuracy = 519/ 598 = 0.8678929765886287
Total Time = 3.3740017414093018 seconds = 3.9050946081126175e-05 days

DNA Category = 2
beta = [27  1  1  1  1  1  1  1  1]
Test 1 Accuracy = 718/ 797 = 0.9008782936010038
The 1 PLUSr's Boolean Expression = ( NOT-X[ 81] AND NOT-X[ 83] AND X[ 84] AND NOT-X[ 85] AND NOT-X[ 86] AND NOT-X[ 87] AND NOT-X[ 88] AND X[ 89] )
Test 2 Accuracy = 553/ 598 = 0.9247491638795987
Total Time = 3.6562066078186035 seconds = 4.2317206109011614e-05 days

DNA Category = 3
beta = [1791    1    1    1    1    1    1    1    1]
Test 1 Accuracy = 412/ 797 = 0.5169385194479298
The 1 PLUSr's Boolean Expression = ( 0 )
Test 2 Accuracy = 292/ 598 = 0.4882943143812709
Total Time = 4.4595561027526855 seconds = 5.1615232670748675e-05 days

DNA Category = 3
beta = [27  1  1  1  1  1  1  1  1]
Test 1 Accuracy = 506/ 797 = 0.6348808030112923
The 1 PLUSr's Boolean Expression = ( X[ 88] )
Test 2 Accuracy = 358/ 598 = 0.5986622073578596
Total Time = 5.478376626968384 seconds = 6.340713688620815e-05 days

DNA Category = 3
beta = [6 1 1 1 1 1 1 1 1]
Test 1 Accuracy = 671/ 797 = 0.8419071518193224
The 1 PLUSr's Boolean Expression = ( X[ 87] OR X[ 88] OR NOT-X[ 89] )
Test 2 Accuracy = 481/ 598 = 0.8043478260869565
Total Time = 5.900444984436035 seconds = 6.829218731986152e-05 days

Total Time = 6.072321891784668 seconds = 7.028150337713736e-05 days

Done

And we reached the maximum for all three categories very quickly, in 6 seconds!
Note that the total dataset has 3,186 lines. Of them, 1791 samples are for the training set described in Step One, 797 for the Test 1 dataset, and 598 for the Test 2 dataset. We take the Boolean expression from the training set and apply it to the unseen Test 1 dataset, letting beta maximize the Test 1 accuracy. Next, we take the same Boolean expression from the training set with this same beta and apply it to an unseen Test 2 dataset, to prevent overlearning.
At the start we don’t know where the best beta lies, but typically we are more successful with smaller ones. Hence, it makes sense to drop down from m by large amounts. Experience tells us that halving is a productive approach: dividing m by 2, testing, dividing by 2 again, testing, and so on. For instance, if we halved the amount several times, we would bring the beta down to 55. 
Using one PLUSr we can run the Python program with a beta = 55. We take the inverse of, say, the 90th input, AND it with inverse of 91st, AND it with inverse of 93rd and so on. We use -X[90] AND -X[91] AND X[92] AND -X[93] AND -X[94] AND -X[95], and we get a test accuracy of 94%, as above in Category 1. That’s a much better result. 
Note that in the 92nd input, the NOT- is gone. 
With beta = 55, we are allowing for error after every 55th input. When we allow for a little error, we gain greater accuracy. 
Step Three Four: Chaining PLUSr’s. The first PLUSr may get close, but it typically doesn’t yield a perfect match with Y. However, there can be any number of PLUSr’s, hundreds or even thousands, in all types of configurations, and depending on the dataset we can use them to further improve accuracy. 
Let’s add a second PLUSr in a chaining series. We’ll call the original PLUSr0 and the new one PLUSr1. We feed PLUSr0 output, that is, Z0, into L1 of PLUSr1, so that L1 = Z0. Here, L is acting not just as an on/off switch, but a receiver of data. Since Z0 = NOT-A2, L1= NOT-A2, as in Figure 4: 

Figure 4
k	A0,k	A1,k	A2,k	Y	L1
0	0	1	1	0	0
1	1	0	1	0	0
2	1	1	1	0	0
3	0	1	0	1	1
4	0	1	1	0	0
5	1	1	0	1	1
6	1	0	0	0	1
7	1	0	1	0	0
8	0	1	0	1	1
9	1	1	1	0	0
10	0	0	1	0	0
11	0	0	0	1	1
12	1	1	0	1	1
13	0	0	1	0	0
14	1	0	1	0	0
15	0	0	1	0	0

Now for PLUSr1 the totals are TX[0] = 3, TX[1] = 4, and TX[2] = 0, as well as TnX[0] = 3, TnX[1] = 2, and TnX[2] = 5, plus TXY[0] = 2, TXY[1] = 4, and TXY[2] = 0, as well as TnXY[0] = 3, TnXY[1] = 1, and TnXY[2] = 5, as well as  TXnY[0] = 1, TXnY[1] = 0, and TXnY[2] = 0, and finally TnXnY[0] = 0, TnXnY[1] = 1, and TnXnY[2] = 1. 
We see that TnXY[0] = TX[0] and TXY[1] = TX[1], and therefore Z1 = NOT-A0 OR A1. By chaining in series like this one, Z0 forms a logical AND with Z1, and the output equals Zout = (NOT-A0 OR A1) AND NOT-A2.
If we continue chaining in series, we would NOT the output of the second PLUSr1 and feed it into the third PLUSr2, so that L2 = NOT-Z1. Next, we’d feed the third PLUSr2 output into the fourth PLUSr3 learning control input L3 = Z2, and we’d go on to alternate L = Z and L = NOT-Z. For the overall output, we’d have Z = Z0 AND (Z1 OR (Z2 AND (Z3 OR (Z4 AND (Z5 OR (Z6 AND (Z7 OR Z8))))))). To make nine PLUSr’s in a chain series, all nine PLUSr’s need the same environmental inputs and the supervisory inputs, as in my program at github.com (see earlier URL).
Below are the maximum results with a string of seven PLUSr’s. The brackets show that the beta is a matrix in Python: 



DNA Category = 1
beta = [1791 1791 1791 1791   55   13  111    1    1]
Test 1 Accuracy = 767/ 797 = 0.9623588456712673
The 7 PLUSr's Boolean Expression = ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 95] ) AND ( ( 0 ) OR ( ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 95] )  AND ( ( 0 ) OR ( ( NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 93] AND NOT-X[ 94] AND NOT-X[ 95] ) AND ( ( X[ 96] OR X[ 104] ) OR ( ( NOT-X[ 6] AND NOT-X[ 9] AND NOT-X[ 15] AND NOT-X[ 34] AND NOT-X[ 40] AND NOT-X[ 76] AND NOT-X[ 83] AND X[ 84] AND NOT-X[ 85] AND NOT-X[ 86] AND NOT-X[ 87] AND NOT-X[ 88] AND X[ 89] AND NOT-X[ 90] AND NOT-X[ 91] AND X[ 92] AND NOT-X[ 93] AND NOT-X[ 94] AND NOT-X[ 95] AND NOT-X[ 97] AND X[ 98] AND X[ 99] AND NOT-X[ 101] AND NOT-X[ 106] AND NOT-X[ 108] AND NOT-X[ 117] AND NOT-X[ 124] AND NOT-X[ 126] AND X[ 128] AND NOT-X[ 132] AND NOT-X[ 135] AND NOT-X[ 136] AND NOT-X[ 138] AND NOT-X[ 141] AND NOT-X[ 145] AND NOT-X[ 147] AND X[ 149] AND NOT-X[ 160] AND NOT-X[ 166] AND NOT-X[ 173] AND NOT-X[ 177] ) ) ) ) ) ) )
Test 2 Accuracy = 583/ 598 = 0.9749163879598662
Total Time = 821.1691691875458 seconds = 0.00950427279152252 days


DNA Category = 2
beta = [ 111  111   27   13  111   13 1791    1    1]
Test 1 Accuracy = 741/ 797 = 0.9297365119196989
The 6 PLUSr's Boolean Expression = ( X[84] and not X[85] and not X[86] and not X[87] and not X[88] and X[89] ) and ( ( 0 ) or ( ( not X[81] and not X[83] and X[84] and not X[85] and not X[86] and not X[87] and not X[88] and X[89] )  and ( ( X[90] or not X[92] or X[93] or X[95] or X[102] ) or ( ( not X[66] and X[84] and not X[85] and not X[86] and not X[87] and not X[88] and X[89] and not X[91] and not X[93] and not X[102] ) and ( ( X[90] or not X[92] or X[93] or X[94] or X[95] or X[102] ) ) ) ) ) )
Test 2 Accuracy = 570/ 598 = 0.9531772575250836

DNA Category = 3
i = 1   beta = [   6  111 1791   55    3   55 1791    1    1]    
Test1 Accuracy = 705/ 797 = 0.8845671267252195
The 2 PLUSr's Boolean Expression = ( X[87] or X[88] or not X[89] ) and ( ( X[90] or X[91] or not X[92] or X[93] or X[94] or X[95] or X 97] or X[101] or X[102] or X[103] or not X[104] )
Test 2 Accuracy = 513/ 598 = 0.8578595317725752


By using seven PLUSr’s instead of one we gain 21 more correct outputs out of a possible 36, which brings the accuracy from 562/ 598 = 94% to 582/ 598 = 97.5% in Category 1. These last few correct outputs are hard to come by and time consuming. It may be best to use one PLUSr unless you really want every little bit.

3) Discussion

The PLUSr works in programming gen AI, micro-controlled robots, and analyzing medical image analysis, to cite just a sample of common uses. It is not only the fastest method known to this investigator, but it is simple and inexpensive, and it works on an unusually wide variety of devices. While not always exactly 100 percent accurate, it comes close enough and its speed, efficiency, and practical accuracy make the tradeoff valuable.
We can use the PLUSr anywhere we can use state-of-the-art linear regression. Linear regression requires a more complex computer structure and language, but yet you can easily write PLUSr programs in assembly language, the level just above the machine language of 1’s and 0’s that a computer responds to directly.
The PLUSr does have a few requirements that linear regression does not. Most notably, linear regression works with real numbers, like 3 and 11.778, while the PLUSr needs Boolean 1’s and 0’s and can require translation into them. With pixels above, for instance, we rounded off those with a brightness greater than 50% to 1, and those with less than 50% to 0. Overall, we can change data into Boolean form with just a bit more work.
The PLUSr really shines when you get away from powerful computers and go to simpler, assembly language microcontrollers. It excels in tiny circuits with only microcontrollers or a CPU and no GPU’s, where it is a fast, easy way to do AI. For instance, when PLUSr’s go into robots with only microcontrollers, they can function in real time. If you put PLUSr’s in these basic circuitries, they will learn on the job how, say, a joint in a robot, works. 
The PLUSr can help analyze medical images, since many of them have a logic structure. Anything with a logic structure lends itself easily to Boolean equations, so it already has a clean path to the PLUSr. It can, essentially, plug in.
The PLUSr is an aid in designing computers, arithmetic, reading, AI, and more. It works well in myriad simple circuitries, where you can slip them right in and have them work and learn. For instance, when it senses pressure on a robot, it can control the response quicker and more effectively, especially if the code is in assembly language. 
Overall, the PLUSr raises the IQ of artificial intelligence. 











